Graded algebras and subproduct systems: dimension two

نویسنده

  • Boris Tsirelson
چکیده

Objects dual to graded algebras are subproduct systems of linear spaces, a purely algebraic counterpart of a notion introduced recently in the context of noncommutative dynamics (Shalit and Solel [5], Bhat and Mukherjee [2]). A complete classification of these objects in the lowest nontrivial dimension is given in this work, triggered by a question of Bhat [1].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Isomorphism Problem for Some Universal Operator Algebras

This paper addresses the isomorphism problem for the universal operator algebras generated by a row contraction subject to homogeneous polynomial relations. We find that two such algebras are isometrically isomorphic if and only if the defining polynomial relations are the same up to a unitary change of variables, and that this happens if and only if the associated subproduct systems are isomor...

متن کامل

2 3 Ju n 20 09 Subproduct systems of Hilbert spaces : dimension two

A subproduct system of two-dimensional Hilbert spaces can generate an Arveson system of type I1 only. All possible cases are classified up to isomorphism. This work is triggered by a question of Bhat: can a subproduct system of n-dimensional Hilbert spaces generate an Arveson system of type II or III? The question is still open for n > 2.

متن کامل

Discrete Subproduct Systems and Word Systems ∗

We show that a sequence of natural numbers is the dimension sequence of a subproduct system if and only if it is the cardinality sequence of a word system. Determining such sequences is, therefore, reduced to a purely combinatorial problem in the combinatorics of words. We provide some new results.

متن کامل

ON GRADED INJECTIVE DIMENSION

There are remarkable relations between the graded homological dimensions and the ordinary homological dimensions. In this paper, we study the injective dimension of a complex of graded modules and derive its some properties. In particular, we define the $^*$dualizing complex for a graded ring and investigate its consequences.

متن کامل

On Derivations of Some Classes of Leibniz Algebras

In this paper, we describe the derivations of complex n-dimensional naturally graded filiform Leibniz algebras NGF1, NGF2, and NGF3. We show that the dimension of the derivation algebras of NGF1 and NGF2 equals n+1 and n+2, respectively, while the dimension of the derivation algebra of NGF3 is equal to 2n−1. The second part of the paper deals with the description of the derivations of complex n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009